Physiology of Cells Cellular Processes

Steven Hawking

Leaky blood vessels that lose their ability to protect the spinal cord from toxins may play a role in the development of amyotrophic lateral sclerosis, better known as ALS or Lou Gehrig's disease

Vocabulary

- Impermeable
 - substance may not cross the membrane
- Freely permeable
 - any substance may cross the membrane
- Selectively permeable
 - passage of some substances and not others
- Concentration gradient
 - difference in dissolved particles

Membrane Transport

- 1. Passive Transport
 - Simple diffusion down concentration gradient
 - Facilitated Diffusion occurs through channel proteins (helpers)
- 2. Active Transport
 - Requires energy (ATP)

Diffusion

- Molecules always move from high to low concentrations
- Occurs down a concentration gradient
- Effective only across small distance.
- Important to eliminate local concentrations
- Move molecules through lipid portion or through protein channel

EXPERIMENT

Question: Does diffusion lead to uniform distribution of solutes?

Conclusion: Solutes distribute themselves by diffusion, uniformly and independently of each other.

Permeability

- Alcohol, fatty acids, steroids,O₂ & CO₂ easily diffuse through the membranes
- Aquaporins are special channels that move water across the plasma membrane

Solute Concentrations

 Isotonic- equal amount of solutes

 Hypotonic- solution has lower solute concentration

 Hypertonic- solution has higher concentration of solutes

Osmosis

- Diffusion of water
- Occurs easily through bilipid layer

 Aquaporins allow for quicker
 P
 movement of water

Isotonic

Inverse relationship

Where this is high solute concentrationthere is low water content

Interesting factoid Our bodies are 0.9 % salinity

Filtration & Hydrostatic Pressure

- Movement of particles across a membrane from and area of high pressure to low pressure
- Hydrostatic / osmotic pressure is the pushing force of water when acting as a solvent.
 - Ex- heart pumping causes blood pressure, kidneys filter out blood

Facilitated Diffusion

 When a molecule either passes through or binds to an channel protein to cross a membrane.

Carrier Proteins

 When substances being transported binds to protein

Active Transport

- Moves substances against concentration gradient
- Solutes move from low→high
- Sodium-Potassium pump

Bulk Transport

LIFE: THE SCIENCE OF BIOLOGY, Seventh Edition, Figure 5.15 Endocytosis and Exor © 2004 Sinauer Associates, Inc. and W. H. Freema

LIFE: THE SCIENCE OF BIOLOGY, Seventh Edition, Figure 5.16 Formation of a Coated Vesic © 2004 Sinauer Associates, Inc. and W. H. Free

LIFE: THE SCIENCE OF BIOLOGY, Seventh Edition, Figure 5.16 Formation of a Coated Vesicle (Part 1 © 2004 Sinauer Associates, Inc. and W. H. Freeman & Co

Table 4-1 Some Important Transport Processes

Description Process Type Passive Movement of particles through Simple diffusion the phospholipid bilayer or through channels from an area of high concentration to an area of low concentration-that is, down the concentration gradient Dialysis Passive Diffusion of small solute particles, but not larger solute particles, through a selectively permeable 0 membrane; results in separation 0 0 of large and small solutes Osmosis Diffusion of water through a Passive selectively permeable membrane in the presence of at least one impermeant solute Facilitated Passive Diffusion of particles through a membrane by means of carrier diffusion molecules; also called

carrier-mediated passive transport

Exam plæ

ovement of carbon dioxide out of all cells; movement of sodium ions into nerve cells as they conduct an impulse

During procedure called peritoneal dialysis, small solutes diffuse from blood vessels but blood proteins do not (thus removing only small solutes from the blood)

Diffusion of water molecules into and out of cells to correct imbalances in water oncentration

Movement of glucose molecules into most cells

Active transport	Active	Movement of solute particles from an area of low concentration to an area of high concentration (up the concentration gradient) by means of a carrier molecule
Phagocytosis	Active	Movement of cells or other large particles into cell by trapping it in a section of plasma membrane that pinches off to form an intracellular vesicle; type of <i>endocytosis</i>
Pinocytosis	Active	Movement of fluid and dissolved molecules into a cell by trapping them in a section of plasma membrane that pinches off to form an intracellular vesicle; type of endocytosis
Exocytosis	Active	Movement of proteins or other cell products out of the cell by fusing a secretory vesicle with the plasma membrane

In muscle cells, pumping of nearly all calcium ions to special compartments—or out of the cell

Trapping of bacterial cells by phagocytic white blood cells

Trapping of large protein molecules by some body cells

Secretion of the hormone, rolactin, by pituitary cells

Diseases of Cell Membrane

- Cystic Fibrosis
 - does not allow Cl⁻ to pumped across the membrane
 - Mucus and secretions in lungs, pancreas thicken
- Duchenne Muscular Dystrophy
 - "leaky" Ca++ channels
- Type II Diabetes
 - Cells become less sensitive to insulin

Cell Energy

Cellular Respiration

- How the cell carries out carbohydrate metabolism.
- Occurs in the cytosol & mitochondria
- Produces net gain of 36 ATP from one glucose (with O₂)
- 1. Glycolysis
- 2. Pyruvate Oxidation (formation)
- 3. Kreb's cycle
- 4. Electron Transport Chain

$C_6H_{12}O_6 + 6O_2 + ADP \rightarrow 6CO_2 + 6H_2O + ATP$ (36 net gain)

Glucose the body's fuel

- Complex carbs are broken down into glucose (monosaccharide)
- Glucose is preferred source of fuel for the human body
- Glucose can power the formation of amino acids, which then can be incorporated into proteins.
- Excess glucose can be stored by liver and skeletal muscles as glycogen.
- If glycogen storage areas fill up, liver cells and fat cells can convert glucose to glycerol and fatty acids.

Glycolsis – First step

- Glycolysis takes place in cytoplasm of cell(outside the mitochondria)
- Creates 2 ATP(net)
 <takes energy to make energy>>
- Breaks glucose in half
- Creates pyruvates (energy transferring molecule)
- Does not use oxygen(anaerobic)

Pyruvate Oxidation

Pyruvate is oxidized to Acetyl CoA

Kreb's (Citric Acid) Cycle- Second Step

Most CO₂ is produced in this step

- Acetyl-CoA produces CO2
- Electron acceptors NAD⁺ & FADH pick up electrons to carry to next step

Electron Transport Chain

- As electrons pass through the respiratory chain, protons are pumped by active transport into the intermembrane space against their concentration gradient.
- The protons then diffuse down the concentration gradient creating ATP in the process.
- Chemiosmosis is the coupling of the potential energy and ATP synthesis.
- The final electron acceptor is O₂ which binds with H₂ to create water

Relationships between Metabolic Pathways

- Catabolic interconversions:
 - 1. Polysaccharides are hydrolyzed into glucose, which passes on to glycolysis.
 - 2. Lipids are converted to fatty acids, which later becomes acetyl CoA
 - 3. Proteins are hydrolyzed into amino acids, which feed into glycolysis or the citric acid cycle.

Relationships between Metabolic Pathways

- What happens if inadequate food molecules are available?
 - Glycogen stored in muscle and liver are used first.
 - Fats are used next. But the brain can only use glucose, so it must be synthesized by gluconeogenesis which uses amino acids.
 - Therefore, proteins must be broken down.
 - After fats are depleted, proteins alone provide energy.

Cellular Respiration: Energy for Life

- Transcription is RNA processing in nucleus
- Translation
 is the
 processes
 making a
 protein from
 mRNA in the
 ribosome

Copyright © 2002 Pearson Education, Inc., publishing as Benjamin Cummingssome